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This paper describes the dynamic behavior of a rotating composite shaft subjected to
axial periodic forces using the finite element method. Laminated composite shafts are
modelled using Timoshenko beams. The numerical results show good agreement with the
reported beams models. Effects of static and time dependent components of axial loads on
the stability of the composite shaft are studied. This paper also investigates the effect of
the rotational speeds and the disk on the unstable regions of the shaft. The numerical results
show that for the same geometric parameters, a steel shaft has a lower frequency than that
of the composite shafts; however, the steel shaft is more stable than composite shafts
because the shaft–disk system is subjected to axial periodic forces at lower rotational
speeds. Also, the effect of the gyroscopic moments makes the steel shaft more sensitive to
the periodic axial load than the composite one.
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1. INTRODUCTION

Sturdy and robust fiber-reinforced composite materials, with high strength and stiffness
ratios coupled with a low specific weight, are attractive for developing light weight drive
shafts. The designed composite shafts are often in the form of multilaminar cylindrical
shells. Therefore, shell theory can be used to study the vibration characteristics of the
composite shafts. Most studies for the analysis of shells are based on either the classical
shell theory or thick shell theories. Classical shell theory is widely used for analyzing thin
shells, although it is simple and neglects the transverse shear effects. Thin shell analyses
of composite material have been performed by Dong [1] using Donnell’s shallow shell
theory, by Bert et al. [2] using Love’s first approximation theory and by Padovan [3] using
Novozhilov’s higher order theory. Thick shells are analyzed, including the shear
deformation effect, and the Donnell’s, Love’s and Sanders’ theories were developed [4–7].
Bert and Kumar [8] presented a model for moderately thick shells by considering thickness
shear deformation and rotatory inertia for predicting the free vibrational behavior of
complete cylindrical shells cross-ply laminated bimodulus composite materials. Rotating
shells were studied by Fox and Harkie [9] using Flügge’s thin shell theory, by Smirnov
[10] using Novozhilov’s shell theory, and by Chen et al. [11] to describe the vibrations at
high rotating speeds undergoing large deformations. The frequencies and damping factor
of rotating cylindrical shells were studied by Sivadas and Ganesan [12], who used theory
for moderately thick shells and considered shear deformation and rotatory inertia.
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Zinberg and Symonds [13] analyzed the vibration of composite shafts to investigate the
critical speeds for rotating anisotropic shafts; their experiments confirmed the advantages
of composite shafts over aluminum alloy shafts. Reis et al. [14] used Donnell’s thin shell
theory and applied finite element method to evaluate critical speeds of thin-walled
laminated composite shafts, and concluded that the lay-up of a composite shaft strongly
influences its dynamic behavior. Lim and Darlow [15] showed that, for optimally designing
of composite drive shafts, the tube radius is determinable if the laminates, the shaft section
length and operating speed are specified.

Using Sanders’ best first approximation shell theory, Kim and Bert [16] analyzed a
rotating shaft containing layers of arbitrarily laminated composite materials and
determined its critical speeds. Both the thin- and thick-shell models, including the Coriolis
effect, were presented. Lam and Loy [17] used Love’s first approximation theory to study
the vibration of thin rotating laminated cylindrical shells. They also illustrated the whirl
speeds of a rotating composite shell by taking into account the Donnell’s, Flügge’s, Love’s
and Sanders’ shell theories [18]. These results indicate that Donnell’s theory holds well only
for cylindrical shells with small L/R ratios (L is the length and R the radius of the shaft),
and when the circumferential wave number is small. For shells with higher L/R ratios or
when the circumferential wave number is non-negligible, the Love’s theory is used for its
higher accuracy and simplicity.

Bert [19] simplified the Bernoulli–Euler beam theory and provided analysis including
bending–twisting coupling effects, to study the critical speeds of composite shafts. Bert and
Kim [20] extended the above-mentioned analysis using the Bresse–Timoshenko beam
model. Conventional beam model approaches used to date are equivalent modules beam
theory (EMBT). Singh and Gupta [21] proposed a lateral, layerwise beam theory (LBT),
which was derived from a layerwise shell theory, in the rotor dynamic analysis of a
composite rotor. The results indicated that the critical speeds calculated by using LBT and
EMBT methods correlate well. Singh and Gupta [22] also investigated the flexural
vibration characteristics of composite cylindrical tubes, by considering only the first
cicumferential modes, essentially the bending modes, and compared the results obtained
from beam and shell theories. For the first two flexural frequencies, the results of the
Timoshenko beam theory correlated well with those of the shell theory [22], for shells with
L/R ratios ranging from 12–600. Therefore, for shell with high L/R ratios, Timoshenko
beam theory predicts accurately the dynamic behavior of a composite cylindrical shell-type
shaft.

The dynamic instability of a rotor-bearing system, subjected to periodic time dependent
axial forces, is interesting. These forces may cause parametric vibration, a phenomenon
that is characterized by unbounded growth of a small disturbance, eventually damaging
the machine. Comprehensive studies of dynamic stability problems of machine
components and structural members are summarized by Bolotin [23]. Chen and Ku [24]
investigated the effect of rotatory inertia, transverse shear deformation and gyroscopic
moment on the dynamic stability of a rotating shaft subjected to periodic axial compressive
loads.

This paper describes a finite element model based upon the Timoshenko beam theory,
to obtain matrix equations of motion for rotating shafts. The present analyses are
validated by comparing both the flexural frequencies with a non-rotating cylindrical
shell [8] and the critical speeds for the composite laminated shafts [13]. Critical whirl
speeds are calculated by employing a whirl frame of reference. The dynamic stability of
a rotating composite shaft subjected to a periodic axial compressive load is also illustrated.
This study also delineates the effect of the rotation speeds and the disk on the unstable
regions.
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2. POTENTIAL AND KINETIC ENERGY

Figure 1 illustrates a uniform shaft with a disk subjected to an axial compressive load
P(t), and rotating at a constant speed V. The rotating frame (xyz) rotates about the X-axis
through an angle Vt with respect to the fixed frame (XYZ). This study presents the
equations of motion for composite layered shell shafts and steel shafts (see Figure 2).

The equivalent modulus beam theory (EMBT) is used to study the dynamic behavior
of the composite shaft. This approach provides accurate results for symmetric
configurations and is easily extended to rotor dynamic analysis. However, the EMBT
suffers from the following limitations: (i) it does not account for bending stretching
coupling and shear normal coupling effects; (ii) it excludes the cross-sectional deformations
and out of plane warping [21].

For an orthotropic layer, which the major material symmetry direction orients at an
acute angle to the reference direction, the stress–strain relations are given as:

8s1

s2

t69= &Q� 11

Q� 12

Q� 16

Q� 12

Q� 22

Q� 26

Q� 16

Q� 26

Q� 66'8o1

o2

g69, (1)

where s1 and s2 are in-plane normal stresses, t6 is the in-plane shear stress; o1 and o2 are
in-plane normal strains, and g6 is the in-plane shear strain. The transformed Q� ’s can be
expressed in terms of the planar reduced stiffness Q’s [25]. The following derivation

Figure 1. A rotating rotor–disk assembly subjected to axial compressive loads.

Figure 2. The whirl frame (x*y*z*) and the inertia frame (XYZ).
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resembles that presented by Bert [19], where the bending and torsional energy for the
laminate shaft are shown as:

U1 = s
N

k=1

1
2 gV

(s(k)
1 o(k)

1 + t(k)
6 g(k)

6 ) dV, (2)

Here N is the total number of layers, and

o1 =−yb'+ za', g6 = r̄f', (3)

in which a, b and f represent the rotations about the y-, z- and x-axes respectively; r̄ is
the radial component of the polar co-ordinate for the circular-cross-section shaft.

Using equations (1) and (3), the strain energy u1 can be expressed as

U1 = 1
2 g

L

0

[CB (a'2 + b'2)+CTf'2] dx,

CB =
p

4
s
N

k=1

Q� (k)
11 [R4

o(k) −R4
i(k)], CT 0

p

2
s
N

k=1

Q� (k)
66 [R4

o(k) −R4
i(k)], (4)

where CB and CT are the bending and torsional rigidities, and Ri(k) and Ro(k) are the inner
and outer radii of the kth ply.

The out-of-plane shear strain energy is given by

U2 = 1
2 g

L

0

CS [(v'− b)2 + (w'+ a)2] dx, (5)

where the shear rigidity CS 0 k̄G12A and k̄=1/(2−G12v12/E1). (Dharmarajan and
McCutchen [26]); G12 denotes the major shear modulus, v12, the major Poisson’s ratio, E1,
the major elasticity modulus. Adding equations (4) and (5), the total strain energy for the
laminated composite shaft can be obtained as

Ucom =U1 +U2 = 1
2 g

L

0

{CB (a'2 + b'2)+CTf'2 +CS [(v'− b)2 + (w'+ a)2]} dx. (6)

The v and w represent the translations of the central line of the shaft in the y and z
directions respectively. The prime (') denotes differentiation with respect to the spatial
co-ordinate x. This model assumes that the ply angle of the composite shaft is (2u)n . This
assumption results in the reduced stiffness Q� 16 being negligibly small, and therefore the
bending–twisting coupling effect can be neglected.

Using the Timoshenko beam theory, the displacement fields of a shaft are described in
the rotating frame (x, y, z) as

ux (x, y, z, t)=−yb(x, t)+ za(x, t), uy (x, y, z, t)= v(x, t)− zf(x, t),

uz (x, y, z, t)=w(x, t)+ yf(x, t), (7)
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where ux , uy and uz denote the displacement of the shaft in the x, y and z directions
respectively. For an isotropic material, the strain– and stress–displacement relations of the
shaft are

oxx =−yb'+ za', oxy = 1
2(−b+ v'− zf'), oxz = 1

2(a+w'+ yf') (8)

and

sxx =E(−yb'+ za'), txy = kG(−b+ v')−Gzf', txz = kG(a+w')+Gyf' (9)

T 1

Comparison of the present results with reported results for an orthotropic shell
[8]. (L=0·8 m, R=0·063 m, t=0·51 mm, E11 =214 GPa, E22 =18·6 GPa,

v12 =0·28, G12 =5·17 GPa)

Investigator Method First bending (Hz) Second bending (Hz)

Bert and Kumar [8] TST 534 1290
SDT1 533 1290
SDT2 534 1290

Singh and Gupta [22] TST 533·5 1289
SDT1 533·4 1290
TBT 533·3 1290

Present TBT 534·5 1292·3

TST: thin shell theory; SDT1: shear deformable theory; SDT2: shear deformable theory with
rotatory inertia; TBT: Timoshenko beam theory.

T 2

Material properties and geometric parameters of the composite shaft

Properties
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Material E1 (Gpa) E2 (Gpa) v12 G12 =G13 (Gpa) G23 (Gpa) r

BE 211 24·1 0·36 6·90 6·90 1·967
GE 139 11·0 0·313 6·05 3·78 1·578

BE, Boron–epoxy, GE, Graphite–epoxy: geometric parameters length L=2·47 m; mean diameter=12·69 cm;
wall thickness=1·321 mm.

T 3

Critical speeds of the composite shaft with the layers of boron–epoxy and the stacking
sequence 90°/245°/(0°)6/90°

Investigator Method of determination Critical speed (r.p.m.)

Zinberg and Symonds [13] Theoretical 5780
Experimental 5500

Bert [19] Bernoulli–Euler beam theory 5919
Bert and Kim [20] Bresse–Timoshenko beam theory 5788
Present Timoshenko beam theory and finite 5714

element method
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The strain energy of the rotating shaft can be derived from equations (8) and (9).

Uiso = 1
2 gggV

(sxxoxx +2txyoxz +2txzoxz ) dV

= 1
2 g

L

0

{EI(a'2 + b'2)+ kGA[(v'− b)2 + (w'+ a)2]+GIPf'2} dx, (10)

where E is the Young’s modulus, G the shear modulus, k the shear correction factor, I
the area moment of inertia and IP the area polar moment of inertia.

The kinetic energy of the shaft, referred to the fixed frame (X, Y, Z), can be written as:

KEs = 1
2 g

L

0

[rA(V� 2 +W� 2)+ rIPf� 2 + rI(u� 2Y + u� 2Z )+2rIPVu� YuZ ] dx, (11)

Figure 3. Regions of dynamic instability for the first mode of a rotating shaft, P*=9·717CB /L2,
6=9·778(CB /rAL4)1/2, ā=0. (a) V=0 r.p.m; (b) V=10 000 r.p.m.; (c) V=20 000 r.p.m. From left to right:
(260°)5, steel, ( 2 30°)5, (0°)10.
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where r is the density, V and W are the displacement along the Y- and Z-axes, uY and
uZ are the rotations about the Y- and Z-axes, and a dot (·) denotes differentiation with
respect to time t. The kinetic energy form illustrated in equation (11) is used for isotropic
and composite shafts.

Consider the disk as a rigid body, then the kinetic energy can be calculated by integrating
equation (11) over the disk, with the deflection V, W, uY and uZ assumed to be independent
of x. The kinetic energy of the disk is expressed as

KEd = 1
2[Md (V� 2

d +W� 2
d )+ JPf� 2 + J(u� 2Yd + u� 2Zd )+2JPVu� YduZd ], (12)

where Md is the mass, J the mass moment of inertia and JP the mass polar moment of
inertia of the disk. Equations (11) and (12) consider the effects of rotatory inertia and
gyroscopic moment.

Figure 4. As Figure 3 but for the second mode.



80

1.6

Ω (r.p.m. × 1000)

W
id

th
 o

f 
th

e 
u

n
st

ab
le

 r
eg

io
n

0.8

400

(b)

0.8

0.0

0.4

(a)

.-.   . . 222

Figure 5. The width of the unstable region when ā=0 and b�=0·5. P*=9·717CB /L2, 6=9·778(CB /rAL4)1/2;
(a) first mode, (b) second mode. Key: ––, (0°)10; –q–, (30°)5; –w–, (60°)5; –R–, steel.

A rotating shaft subjected to an axial compressive load P(t) will perform work given
by the following equation, which considers stability analysis.

Wp = 1
2 g

L

0

P(t)(v'2 +w'2) dx. (13)

In order to calculate the governing equations, the strain energy of a shaft should be
expressed in the fixed frame. The displacement vector for the fixed frame is
{Q}= {V, W, uY , uZ , f}T, and that for the rotating frame is {q}= {v, w, a, b, f}T. The
two frames are related from {q}=[R]{Q}, the transform matrix [R] is:

cos Vt sin Vt 0 0 0

−sin Vt cos Vt 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[R]= 0 0 cos Vt sin Vt 0 . (14)

0 0 −sin Vt cos Vt 0

0 0 0 0 1

The strain energy Ucom and Uiso are defined as

Ucom = 1
2 g

L

0

{CB (u'2Y + u'2Z )+CS [(V'− uZ )2 + (W'+ uY )2]+CTf'2} dx, (15)

and

Uiso = 1
2 g

L

0

{EI(u'2Y + u'2Z )+ kGA[(V'− uZ )2 + (W'+ uY )2]+GIPf'2} dx, (16)
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Figure 6. Effect of static load factor ā on the regions of dynamic instability of a rotating shaft, with the stacking
sequence (260°)5, V=40 000 r.p.m. Key: ––, ā=0·2; –w–, ā=0·5.

The external work can be expressed as

Wp = 1
2 g

L

0

P(t)(V'2 +W'2) dx. (17)

3. THE FINITE ELEMENT EQUATION

The generalized co-ordinate at node i, i.e., two translations (Vi , Wi ), three rotations
(uYi , uZi , fi ) and their derivatives (V'i , W'i , u'Yi , u'Zi , f'i ), describe the finite element model.

Figure 7. The width of the unstable region for the case of the stacking sequence (260°)5 at b�=0·5; (a) first
mode, (b) second mode. Key: ––, ā=0·1; –q–, ā=0·3; –w–, ā=0·5.
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Figure 8. Regions of dynamic instability for the composite shaft with the stacking sequence
(90°/245°/(0°)6/90°), p*=9·04CB /L2, 6=6·43(CB /rAL4)1/2, ā=0·5, V=0 r.p.m.; (a) first mode, (b) second
mode. Key: ––, L1=L/2; –w–, L1 =L/3; –e–, L1 =L/6.

Figure 9. As Figure 8 but V=10 000 r.p.m. Key as for Figure 8.
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Then the displacement field of the element can be approximated as:

V Vi V'i Vi+1 V'i+1 N1(j)
W Wi W'i Wi+1 W'i+1 N2(j)

g
G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f

h
G

G

J

j

uY = uYi u'Yi uYi+1 u'Yi+1 N3(j)
, (18)

uZ uZi u'Zi uZi+1 u'Zi+1 N4(j)
f fi f'i fi+1 f'i+1

where Ni (j), (i=1, 2, 3, 4), represent the one dimensional local cubic Hermite polynomial
shape function, where detailed forms are listed in Appendix A. If equation (18) is
substituted into equations (11), (12) and (15–17), the potential energy Ue and the kinetic
energy Te can be rewritten in terms of the nodal displacement vector as

Ue = 1
2{Qe}T[Ke]{Qe}− 1

2P(t){Qe}T[Ke
G ]{Qe}, (19)

Te = 1
2{Qe}T[Me]{Qe}− 1

2V{Qe}T[Ge
Y ]{Qe}, (20)

Reformulating all elements, the Lagrangian functional L* is expressed as

L*= s
e

(Ue −Te). (21)

Substituting equation (21) into Lagrange’s equations gives

[M]{Q� }−V[GY ]{Q� }+([K]−P(t)[KG ]){Q}=0, (22)

where {Q}= {V1, V'1 , W1, W'1 , . . . , uYN , u'YN , uZn , u'ZN , fN , f'N}T is the global nodal
co-ordinates vector. [M] is the mass matrix, [GY ], the gyroscopic matrix, [K], the stiffness
matrix contribution of the strain energy of the shaft, and the geometric matrix [KG ], the
axial load P(t) contribution.

3.1.   

In order to validate the present model, critical speeds of the composite shaft are
compared with those in previous works. The supports of the rotating shaft are assumed
to be isotropic; therefore, a rotating reference frame can be used to analyze the whirl speeds
of a rotating shaft under an axial load. The displacement variables between the fixed
(XYZ) and the whirl (x*y*z*) frame co-ordinates are related as:

{Q}T = [R*]{p}T, (23)

where

cos vt −sin vt 0 0 0

sin vt cos vt 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[R*]= 0 0 cos vt −sin vt 0 (24)

0 0 sin vt cos vt 0

0 0 0 0 1

Since the displacement vector {p} is constant relative to the whirl frame (x*y*z*), the
system’s equations of motion can be simplified into the following form [27]

([K]−P(t)[KG ]){p}−v2([MT ]+ (1−2l)[MR ]){p}= {0}, (25)
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where l0V/v and v is the whirl speed; [M]0 [MT ]+ [MR ], [MT ] is the translational mass
matrix and [MR ] is the rotatory inertia matrix. The whirl ratio l is +1 for forward whirl
mode and −1 for backward whirl mode.

3.2.   

A fraction of the non-rotating, fundamental static buckling load P* can describe a
rotating shaft subjected to a periodic axial force P(t)=P0 +Pt cos ut, where u is the axial
disturbance frequency, and the static and time dependent components of the load are given
by

P(t)= āP*+ b�P* cos ut. (26)

If the static and time dependent components of the load are applied similarly, then
equation (22) changes to be following equation.

[M]{Q� }−V[GY ]{Q� }+([K]− (āP*+ b�P* cos ut)[KG ]){Q}=0. (27)

Equation (27) represents a system of second order differential equations with periodic
coefficients of the Mathieu–Hill type. The theory of linear equations with periodic
coefficients predicts that the boundaries between stable and unstable regions can be
constructed by periodic solutions of period T and 2T, where T=2p/u. The solutions with
period 2T are important. Equation (28) describes a first approximation of the periodic
solutions with period 2T [23]

{Q}= {a} sin (ut/2)+ {b} cos (ut/2). (28)

Substituting equation (28) into equation (27) and equating the coefficients of the
sin (ut/2) and cos (ut/2) terms provides a set of linear homogeneous algebraic equations
in terms of {a} and {b}. The conditions for the set of linear homogeneous equations to
have non-trivial solutions is

b[K]− (āP*− b�P*/2)[KG ]− (u2/4)[M]
(Vu/2)[GY ]

(Vu/2)[GY ]
[K]− (āP*+ b�P*/2)[KG ]− (u2/4)[M]b=0. (29)

Equation (29) can be referred to as the equation of boundary frequencies, and can be used
to calculate the boundaries of instability regions.

4. RESULTS AND DISCUSSION

Numerical results of the present method are compared with those in previous models.
Table 1 lists the natural frequencies obtained by the present method and some reported
frequencies. A comparison indicates that the configurations considering the equivalent
modulus beam theory provide accurate values of the flexural frequencies. The critical speed
of a thin-walled composite shaft with a ten-layered laminate was also examined, as
investigated by Zinberg and Symonds [13]. The material properties and the geometric
parameters are listed in Table 2. In Table 3, the critical speed of a boron–epoxy composite
shaft is calculated by the present finite element beam model. The present model shows good
agreement with those reported by other researchers.

The first two instability regions for a simply supported shaft are shaded in Figures 3
and 4. The rotational speeds V are included and the disk is excluded. A steel shaft of the
same geometric parameters as those of a graphite-epoxy composite shaft, shown in Table
2, is considered in the study. The material properties of the steel shaft are E=207E9 Pa,
G=79·6E9 Pa, k=0·53, r=7680 kg/m3. P* and 6, as shown in Figures 3 and 4, are the
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non-rotating fundamental static buckling load and natural frequency of the composite
shaft with a stacking sequence of (260°)5. When ā=0 and b�=0, the solution of equation
(29) provides the natural frequencies (v= u/2). Figure 3(a) shows that the natural
frequency ratio (u/6) are twice the roots of the shaded regions for non-rotating shafts.
The fundamental frequency of the steel shaft is smaller than when the ply orientation is
(230°)5 and (0°)10, but larger than when the ply orientation is (260°)5. The unstable region
of the steel shaft is much smaller than that of the composite one. The second mode also
shows similar results obtained for the first mode (see Figure 4(a)). This phenomenon is
due to the composite shaft being more sensitive to the axial compressive load. The unstable
regions, for the same mode, when the stacking sequence is (260°)5, are larger than those
of (230°)5 and (0°)10. Therefore, increasing the fiber angles u shifts the unstable region
closer to the dynamic load factor axis and broadens the region, if the stacking sequence
of the composite shaft is represented as (2u)n . The stacking sequence of the composite
layers has exerted a significant effect on the dynamic stability characteristic of a rotating
composite shaft. When the rotational speed increases, the boundaries of the regions of
dynamic stability shift away from each other and unstable regions broaden (Figures 3 and
4), since the gyroscopic moment is proportional to the rotational speed. It can be
concluded that the gyroscopic moment destabilizes the dynamic stability for the composite
and steel shafts. Chen and Ku [24] arrived at a similar conclusion.

The effect of rotational speed on the width of the unstable regions is illustrated in
Figure 5. It is evident that as the rotational speed increases, the width of the second mode
region enlarges more rapidly than for the first mode. In addition, the unstable region of
the steel case is increased faster than the other composite cases. Thus, the gyroscopic
moment exerts a larger destabilizing effect on the steel shaft than on the composite shaft
can be seen in these diagrams. The influence of this gyroscopic moment is different because
the steel shaft is denser than the composite one.

Figure 6 illustrates the effects of the static load factor ā on the unstable regions. As the
static load factor increases, the unstable regions shift to the left and the width of the first
region increases; thus the rotating shaft is more unstable. Figure 7 describes the effects of
the rotational speed and the static load component on the unstable region. It shows that,
with different ā, the width of the unstable region is different for the first mode, but is quite
closed for the second mode.

Figures 8 and 9 show the influence of the position of the disk on the composite shaft.
The geometric parameters of the disk are Md =1·5 kg, J=0·004 kgm2 and
JP =0·008 kgm2. When the disk is shifted nearer to the supported end (x=0), the first
unstable regions in Figures 8(a) and 9(a) shift to the right (higher frequency ratio) and
the widths of these regions increase; however, when the distance L1 decreases, the unstable
regions of the second mode shift to the left and the widths of these regions decrease.
Therefore, for a lower disturbance frequency of the axial load, the rotating shaft with a
disk at the center (L1 =L/2) is more stable than the other cases, but is less stable than
the other two cases when a higher disturbance frequency is applied.

5. CONCLUSIONS

The Timoshenko beam and a finite element technique was used to model the laminated
composite shaft and to determine the regions of dynamic instability of the rotating shaft.
The present numerical results agree with those in reported literature. The natural frequency
of the composite shaft would be higher than the steel shaft for the same geometric
parameters. Owing to its higher density, the steel shaft is more sensitive to the rotational
speed than is the composite shaft. The stacking sequence of the composite shaft profoundly
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effects the critical speed and the dynamic stability of the composite shaft. The influence of
the disk on the dynamic stability is also studied in this work. Decreasing the length L1 causes
broadening of the first unstable region, and narrowing of the second region. Therefore, a
decrease in the length L1 makes the rotating shaft less stable when a lower disturbance
frequency is applied and more stable when a higher disturbance frequency is applied.
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APPENDIX

The cubic Hermite polynomial shape functions:

N1(j)= (2−3j+ j3)/4, N2(j)= (1− j− j2 + j3)/4,

N3(j)= (2+3j− j3)/4, N4(j)= (−1− j− j2 + j3)/4.

The element matrices:

(Aij ) 0 0 0 0 0 0 0 0 0

0 (Aij ) 0 0 0 0 0 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

[MT ]= 0 0 0 0 0 , [MR ]= 0 0 (Bij ) 0 0 ,

0 0 0 0 0 0 0 0 (Bij ) 0

0 0 0 0 (Cij ) 20×20 0 0 0 0 0 20×20

0 0 0 0 0

0 0 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[GY ]= 0 0 0 −2(Bij ) 0 ,

0 0 2(Bij ) 0 0

0 0 0 0 0 20×20

(Dij ) 0 0 (Hij ) 0

0 (Dij ) (Fij ) 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[K]= 0 (Gij ) (Eij ) 0 0 ,

(Iij ) 0 0 (Eij ) 0

0 0 0 0 (Jij ) 20×20

(Lij ) 0 0 0 0

0 (Lij ) 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[KG ]= 0 0 0 0 0 ,

0 0 0 0 0

0 0 0 0 0 20×20
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where,

(Aij )=g rANiNj dx, (Bij )=g rINiNj dx, (Cij )=g rIPNiNj dx,

(Dij )=g CSN'i N'j dx, (Eij )=g [CBN'i N'j +CSNiNj ] dx,

(Fij )=g CSN'i Nj dx, (Gij )=g CSNiN'j dx, (Hij )=g−CSN'i Nj dx,

(Iij )=g−CSNiN'j dx,

(Jij )=g CTN'i N'j dx, (Lij )=g N'i N'j dx, i, j=1, 2, 3, 4.

The above equations are for a composite shaft; if an isotropic shaft is used, the coefficients
CB , CS and CT will be replaced by EI, kGA, and GIP respectively.


